Skip to main content

Class and Objects in python

 

Python Objects and Classes


                Python is an object oriented programming language. Unlike procedure oriented programming, where the main emphasis is on functions, object oriented programming stresses on objects.

An object is simply a collection of data (variables) and methods (functions) that act on those data. Similarly, a class is a blueprint for that object.



We can think of class as a sketch (prototype) of a house. It contains all the details about the floors, doors, windows etc. Based on these descriptions we build the house. 




                                              House is the object.

As many houses can be made from a house's blueprint, we can create many objects from a class. An object is also called an instance of a class and the process of creating this object is called instantiation.



Defining a Class in Python

Like function definitions begin with the def keyword in Python, class definitions begin with a class keyword.

The first comment string inside the class is called docstring and has a brief description about the class. Although not mandatory, this is highly recommended.

Here is a simple class definition.

class MyNewClass:
    '''This is a docstring. I have created a new class'''
    pass

A class creates a new local namespace where all its attributes are defined. Attributes may be data or functions.

There are also special attributes in it that begins with double underscores __. For example, __doc__ gives us the docstring of that class.

As soon as we define a class, a new class object is created with the same name. 

This class object allows us to access the different attributes as well as to instantiate new objects of that class.

class Person:
    "This is a person class"
    age = 10

    def greet(self):
        print('Hello')


# Output: 10
print(Person.age)

# Output: <function Person.greet>
print(Person.greet)

# Output: "This is a person class"
print(Person.__doc__)

Output

10
<function Person.greet at 0x7fc78c6e8160>
This is a person class

Creating an Object in Python

We saw that the class object could be used to access different attributes.

It can also be used to create new object instances (instantiation) of that class. The procedure to create an object is similar to a function call.

>>> harry = Person()

This will create a new object instance named harry. We can access the attributes of objects using the object name prefix.

Attributes may be data or method. Methods of an object are corresponding functions of that class.

This means to say, since Person.greet is a function object (attribute of class), Person.greet will be a method object.

class Person:
    "This is a person class"
    age = 10

    def greet(self):
        print('Hello')


# create a new object of Person class
harry = Person()

# Output: <function Person.greet>
print(Person.greet)

# Output: <bound method Person.greet of <__main__.Person object>>
print(harry.greet)

# Calling object's greet() method
# Output: Hello
harry.greet()

Output

<function Person.greet at 0x7fd288e4e160>
<bound method Person.greet of <__main__.Person object at 0x7fd288e9fa30>>
Hello

You may have noticed the self parameter in function definition inside the class but we called the method simply as harry.greet() without any arguments. It still worked.

This is because, whenever an object calls its method, the object itself is passed as the first argument. So, harry.greet() translates into Person.greet(harry).

In general, calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list that is created by inserting the method's object before the first argument.

For these reasons, the first argument of the function in class must be the object itself. This is conventionally called self. It can be named otherwise but we highly recommend to follow the convention.

Now you must be familiar with class object, instance object, function object, method object and their differences.


Constructors in Python

Class functions that begin with double underscore __ are called special functions as they have special meaning.

Of one particular interest is the __init__() function. This special function gets called whenever a new object of that class is instantiated.

This type of function is also called constructors in Object Oriented Programming (OOP). We normally use it to initialize all the variables.

class ComplexNumber:
    def __init__(self, r=0, i=0):
        self.real = r
        self.imag = i

    def get_data(self):
        print(f'{self.real}+{self.imag}j')


# Create a new ComplexNumber object
num1 = ComplexNumber(2, 3)

# Call get_data() method
# Output: 2+3j
num1.get_data()

# Create another ComplexNumber object
# and create a new attribute 'attr'
num2 = ComplexNumber(5)
num2.attr = 10

# Output: (5, 0, 10)
print((num2.real, num2.imag, num2.attr))

# but c1 object doesn't have attribute 'attr'
# AttributeError: 'ComplexNumber' object has no attribute 'attr'
print(num1.attr)

Output

2+3j
(5, 0, 10)
Traceback (most recent call last):
  File "<string>", line 27, in <module>
    print(num1.attr)
AttributeError: 'ComplexNumber' object has no attribute 'attr'

In the above example, we defined a new class to represent complex numbers. It has two functions, __init__() to initialize the variables (defaults to zero) and get_data() to display the number properly.

An interesting thing to note in the above step is that attributes of an object can be created on the fly. We created a new attribute attr for object num2 and read it as well. But this does not create that attribute for object num1.


Deleting Attributes and Objects

Any attribute of an object can be deleted anytime, using the del statement. Try the following on the Python shell to see the output.

>>> num1 = ComplexNumber(2,3)
>>> del num1.imag
>>> num1.get_data()
Traceback (most recent call last):
...
AttributeError: 'ComplexNumber' object has no attribute 'imag'

>>> del ComplexNumber.get_data
>>> num1.get_data()
Traceback (most recent call last):
...
AttributeError: 'ComplexNumber' object has no attribute 'get_data'

We can even delete the object itself, using the del statement.

>>> c1 = ComplexNumber(1,3)
>>> del c1
>>> c1
Traceback (most recent call last):
...
NameError: name 'c1' is not defined

Actually, it is more complicated than that. When we do c1 = ComplexNumber(1,3), a new instance object is created in memory and the name c1 binds with it.

On the command del c1, this binding is removed and the name c1 is deleted from the corresponding namespace. The object however continues to exist in memory and if no other name is bound to it, it is later automatically destroyed.

This automatic destruction of unreferenced objects in Python is also called garbage collection.

Deleting Object in Python
Deleting objects in Python removes the name binding

Comments

Popular posts from this blog

Is-A and Has-A relationships in python

  In object-oriented programming, the concept of IS-A is a totally based on Inheritance, which can be of two types Class Inheritance or Interface Inheritance. It is just like saying "A is a B type of thing". For example, Apple is a Fruit, Car is a Vehicle etc. Inheritance is uni-directional. For example, House is a Building. But Building is not a House. #Is-A relationship --> By Inheritance class  A:    def   __init__ ( self ):      self .b= 10    def   mym1 ( self ):      print ( 'Parent method' ) class  B(A):    def   mym2 ( self ):      print ( 'Child method' ) d = B() d.mym1() #output: Parent method d.mym2() #output: Child method HAS-A Relationship:  Composition(HAS-A) simply mean the use of instance variables that are references to other objects. For example Maruti has Engine, or House has Bathroom. Let’s understand...

Inheritance and Types in Python

  Inheritance   Creating a new class from existing class is known as inheritance . The class from which features are inherited is known as base class and the class into which features are derived into is called derived class . Syntax: class  derived- class (base  class ):       < class -suite>      Inheritance promotes reusability of code by reusing already existing classes.  Inheritance is used to implement  is-a  relationship between classes.   Following hierarchy is an example representing inheritance between classes:   Single inheritance   When a derived class inherits only from syntax, the base class is called single inheritance. If it has one base class and one derived class it is called single inheritance.   Diagram     Syntax class  A:  #parent class         #some code       class  b(A):...

Exception Handling in Python

  Introduction   An error is an abnormal condition that results in unexpected behavior of a program. Common kinds of errors are syntax errors and logical errors. Syntax errors arise due to poor understanding of the language. Logical errors arise due to poor understanding of the problem and its solution.   Anomalies that occur at runtime are known as exceptions. Exceptions are of two types: synchronous exceptions and asynchronous exceptions. Synchronous exceptions are caused due to mistakes in the logic of the program and can be controlled. Asynchronous exceptions are caused due to hardware failure or operating system level failures and cannot be controlled.   Examples of synchronous exceptions are: divide by zero, array index out of bounds, etc.) . Examples of asynchronous exceptions are: out of memory error, memory overflow, memory underflow, disk failure, etc. Overview of errors and exceptions in Python is as follows:     Handling Exceptions   Flowch...